Redundant Actuation of Parallel Manipulators
نویسنده
چکیده
High stiffness, low inertia, large accelerations, and high precision are desirable properties attributed to parallel kinematics machines (PKM). However, relatively small workspace and the abundance of singularities within the workspace partly annihilate the aforementioned advantages. Redundant actuation and novel redundant kinematics are means to tackle these shortcomings. Redundant parallel kinematics machines are ideal candidates for use in highprecision applications, such as robot-assisted surgery. Their advantageous features promise to deliver the needed accuracy, stiffness, dexterity and reliability. Redundant actuation admits to eliminate singularities, increase the usable workspace, augment the dexterity, and partially control the internal forces. Actuator redundancy is also a means to improve fault tolerance, as redundant actuators can compensate the failure of other actuators. Redundant actuation increases the payload and acceleration, can yield an optimal load distribution among the actuators, or can reduce the power consumption of the individual drives. Actuator redundancy can also improve the force transmission properties and the manipulator stiffness. It can be purposefully exploited for secondary tasks, such as the generation of internal prestress and the generation of a desired compliance of the PKM. The first can be used to avoid backlash, whereas the second admits to homogenize the stiffness properties within the workspace. Kinematically redundant PKM, i.e. systems that possess a higher mobility then required for the task, allow to circumvent singularities as well as obstacles, and to increase the dexterity. The control of redundantly actuated PKM poses additional challenges, rooted in the resolution of the redundancy within the control schemes. Whereas, model-based control techniques can be directly applied to the control of non-redundantly actuated PKM, redundancy, however, brings up two specific problems, one is the computationally efficient resolution of the actuation redundancy, and the other is the occurrence of unintentional antagonistic actuation due to model uncertainties. This chapter is devoted to the modeling and control of redundantly actuated PKM. The aim of the chapter is to summarize concepts for dynamic modeling of redundantly actuated PKM, with emphasize on the inverse dynamics and control, and to clarify the terminology used in the context of redundant actuation. Based on a mathematical model, PKM are regarded as non-linear control systems. The chapter is organized as follows. A short literature review in section 2 is meant to familiarize the reader with current developments and research directions. In order to point out the potential of redundantly actuated PKM, a motivating example is given in section 3.
منابع مشابه
Interval Analysis of Controllable Workspace for Cable Robots
Workspace analysis is one of the most important issues in the robotic parallel manipulator design. However, the unidirectional constraint imposed by cables causes this analysis more challenging in the cabledriven redundant parallel manipulators. Controllable workspace is one of the general workspace in the cabledriven redundant parallel manipulators due to the dependency on geometry parameter...
متن کاملKinematic, singularity and stiffness analysis of the hydraulic shoulder: a 3-d.o.f. redundant parallel manipulator
In this paper, kinematic modeling and singularity and stiffness analysis of a 3-d.o.f. redundant parallel manipulator have been elaborated in detail. It is known that, contrary to series manipulators, the forward kinematic map of parallel manipulators involves highly coupled non-linear equations, whose closed-form solution derivation is a real challenge. This issue is of great importance noting...
متن کاملThe 3-rprr Kinematically Redundant Planar Parallel Manipulator
In this work, the 3-RPRR, a new kinematically redundant planar parallel manipulator with six degrees of freedom, is presented. First the manipulator is introduced and its inverse displacement problem discussed. Then, all types of the singularities of the 3-RPRR manipulator are analysed and demonstrated. Thereafter, the reachable and dexterous workspaces are obtained and compared with those of t...
متن کاملStatic Error Free Tracking Control Based on Linear Quadratic Regulator of 3-DOF Parallel Manipulator with Redundant Actuation
Parallel manipulators have advantages such as high stiffness, low moving inertia, high payload capability, and high accuracy. In this paper, the servo drive system of valve controlled asymmetrical hydraulic cylinder is designed for 4SPS/S parallel manipulator with redundant actuator. A unified nonlinear model suitable for forward and inverse motion is deduced for the valve controlled asymmetric...
متن کاملActuation Torque Reduction in Parallel Robots Using Joint Compliance
This work studies in detail how the judicial application of compliance in parallel manipulators can produce manipulators that require significantly lower actuator effort within a range of desired operating conditions. We propose a framework that uses the Jacobian matrices of redundant parallel manipulators to consider the influence of compliance both in parallel with the actuated joints as well...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012